EMISSIVITY OF THREE-DIMENSIONAL BODIES AND
ANGULAR COEFFICIENTS IN REAL-MEDIUM SYSTEMS

S. P. Detkov UDC 536.33

A new method is proposed for calculating the emissivity of three~-dimensional bodies

and the angular coefficients in real-medium systems. Use is made of published for-

mulas for gray bodies and of one-dimensional nomograms constructed on the basis of
experimental data.

There is no basic difficulty in accounting for the geometry of a body in idealized gray-medium sys-
tems, although a digital computer is often used. Many articles have been written on this subject. Most
of the results are of no value in problems involving a real medium, because of the wide differences be-~
tween real and gray radiation characteristics. Hence those methods and typical examples where develop-
ments in the theory of gray systems find wide application have become of greater inferest,

All formulas for the emissivity, the angular coefficients, and derivative quantities can, in the case
of monochromatic (or gray) radiation, be reduced fo the form
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The coefficients ¢, and ¢; do not depend on the wave number. In order to apply formulas (1) to real-
medium systems, one must integrate over the spectrum. We will consider here only examples involving
a thermal radiation flux. The calculation of emissivity amounts to actually calculating the thermal ab-
sorptive power of a medium at temperature T = T;. For the complete spectrum (1) becomes
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The proposed method of calculation is narrowed down by still another condition. All functions fj must
be approximated by the expression

f3(Ta) = ) @i exp (— biy). (3)

Transforming this and inserting into (2) will yield
co—}—Zc,—{Ea Za i S\ Iyo [l —exp(— b x)]dm}.
i i
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Here

- j Lyoll — exp {(~bja X)]dw = €(bjx) is the one-dimensional emissivity of a bjx-long segment of
0
the medium at temperature T. Finally, instead of (2), we have

Co T 2 c; [2 a; — 2 a;e (T, bix)} . (4)
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The ¢-values are read off known nomograms. The coefficients ¢, cj, aj, and bj are given by formulas
derived for gray bodies. Inthis way, formula ) can in many cases be used as it stands. This will be illu-
strated on examples given by Mikk (1, 2, 3] and by myself [4, 5, 6, 7]. In (1, 2, 3] fj is represented by the
function E, and the intermediate functmns M, Ny, Ny, S,. In {4, 5] the intermediate functions are expressed
in terms of special functions Kip. Functions E;, Kip, and thus also M, N;, N,, S, in [5, 6] are approxi-
mated according to formula (3) — very accurately within certain intervals of the argument, It is favorable
that function f; can often be expressed in terms of integrals of exponential functions: in such cases for-
mula (3) goes into a quadrature. The coefficients g; and by are calculated, to the first approximation, from
the nodes and the weights of the Gauss quadrature. They are then refined by iteration. Formula (4), which
has been derived here, represents a new target toward which the earlier effort on approximating function
fj must be continued.

Let us proceed now to the illustrative examples -- to problems with original solutions. The numeri-
cal calculations apply essentially to gaseous carbon dioxide, which has a bright and discrete spectrum. As
the argument we use the product p! where [ is the characteristic dimension of a body. The emissivity
nomograms are used according to [8].

Example 1. Emissivity of an Infinite Strip. For monochromatic radiation

1o = 1—2E;(2,).

In [6] the following approximation is given:
2E;(t) = 0.0628 exp (— 8.81) -- 0.4444 exp (— 21) -+ 0,4928 exp (— 1,1251).
The error does not exceed 0.6% on the interval 7 [0,2]. According to Eg, (4), we have
e, = 0.0628 ¢ (8,8/) 4- 0,4444 ¢ (2]) + 0.4928 £ (1.125)). (5)

For CO, and HyO the results according to (5) agree closely with those which Nevskii has obtained in [9] by
a very precise quadrature,

The angular coefficient for the surfaces of a strip is 1 —ay, where for a band spectrum:
dy =(T/TY" €T, x(TITy) . ) (6)
For CO, and HyO the exponents m and u are used according to Hottel. Combining Egs. (5) and (6) yields
a simple expression for the angular coefficient:
@, = 1 — (T/T )" {0.0628 & [Ty, 8.81(T/Ty)"] - 044445 [T,, % (T/T o] + 0.4928¢ [T,, 1.1251(T/T,)I}. ()

Formula (6) is used in [10] for calculating the absorptive power of a nonisothermal segment also in the
case of a gray incident radiation flux. . These examples extend conmderably the range of validity of Eq. @)
for practical calculations,

Example 2. Local Emissivity of an Infinitely Long Semicylinder, ‘at the Center of Its Plane Base.
For monochromatic radiation

g = | —M(1,), T, = R,
According to [5],
M (t) = 0.046 exp (— 3.47) -+ 0,317 exp (— 1.427) - 0,637 exp (— 1.047).
The error does not exceed 1% for 0 =< 7 < 5. According to Eqg. ),
gy = 0,046 & (3.4R) -+ 0.317 ¢ (1.42R) + 0,637 & (1.04R). (8)

The local angular coefficient for this point and the surface containing the volume iS 1 —ag,. In the case of
a band spectrum, the formula for ¢, is analogous to (7).

Example 3. Emissivity of an Infinite Cylinder. For monochromatic radiation
—1—S,(@,D).

According to [5],
S, () = 0.035 exp (— 0.206 1) -+ 0.235 exp (— 0.51 ©) +.0.56 exp (— 1.04 v) + 0,17 exp (— 1.57 7).
The error is approximately 1% for 0 < 7 < 5. According to Eq. (),
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Fig. 1. Configurations for calculating the angular
coefficients,

£y = 0.035 £ (0.206 D) -+ 0.235¢ (0.51 D) - 0.56 ¢ (1.04 D) - 0,17 & (1.57 D). (9)

The angular coefficient for a shell "onto itself" is 1 —ay. Its calculation has been explained in Example 1.

Example 4. Two-Dimensional Local Angular Coefficient for an Element dF and a Normally Oriented
Strip (Fig. 1a). The coefficient for strip 3, extending from under angle B4 to infinity will be taken as the
principal one:

1 .
Eor,s = S sin ;N (ry).
For the semiinfinite strip (8 = 7/2):

1
Ear(itats) = o N, ).

The meaning of function Ny becomes apparent here. The distributive law applied to £ dF,s yields formulas
for any strip. In the case of a real medium also, it suffices to use the formula for ng .. According to [5],

Ny (1) =0,36exp (~— 8.5 1) + 0.53 exp (— 1.97) -4 0.11 exp (— 1.08 7).

According to Eq. 4), we have
. 1 .
Eirs = e sin By [1 —0.36€(8.5r;) —0.53 ¢ (1.97,) —0.11(1.08 AN

Here £' is the angular coefficient when the medium and element dF are at the same temperature. When
their temperatures are not the same, we have for a band spectrum:

1
fara = ——sin b {1 — Ty ‘:0.368 (TO, 85r, —;_0_)

+0538< » 19r1771.. )+0118(T0! 1.08r1 ‘;‘L)]}

Example 5. Mean Angular Coefficient for Parallel Strips (Fig. 1b). According to the approximate
Mikk formula derived for gray radiation,

H 1 1 i 1
Puih = o {(pg — Py F 0y — 0y) 2E; (o, H) + (* ——+ ———)[253 (@H) —M (%Hﬂ} -
2A P2 0 P4 03
The change of functions E5 and M according to (3) and the introduction of the absorptive power will yield
Eq. @) for the angular coefficient ¢;).. This formula is not shown here, because it follows from the pre-
ceding examples.

In the studies made by Mikk we find many other examples where the formulas for the angular coef-
ficient can be used as they stand in the case of real-medium bodies. They are easily written down after
acquaintance with the preceding examples. We will now consider an opposite example, where the approxi-
mation of functions in the form (3) must be further refined.

Example 6. Angular Coefficient for Perpendicular Strips (Fig. 1c¢). According to the exact Mikk for-
mula for a gray medium,
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l In [5] this author has obtained an approximation of function
/) 7 0 N, in the form (3). This approximation is not adequate, how-
a b c

ever. In order to adapt Eq. (4), it becomes necessary to ap-
proximate the function Ny(wr)/ar. Inview of the singularity
asor — 0, formula (3) is limited at small ¢r-values. This
is circumvented by introducing a new function:

Ny(ar) = [Ny (0) — N, (ar)l/or,

Fig. 2. Sections of two-dimensional
bodies.

where N, (0) =4 /3. Function N; varies within the interval [0,1]. Therefore, it can be easily approxi-
mated by Eq. (3). The angular coefficient becomes:

1
Poo = —A— {rolVs (@ar) — riNg (@r)  ralNg (o) — relg (a1,

The restriction on adapting Eq. (4) has been removed. An analogous procedure can be adopted in many
other cases.

Example 7. In [6, 7] approximate formulas are given for the local and the mean angular coefficient:
Do = 9° exp (— a,leff)- (10)

This expression is extremely simple. The effective length loff is determined easily if the surfaces
are sufficiently far apart. If [,¢r and the range of validity of Eq. (10) do not depend on the wave number,
then there are no restrictions on its application to a real medium. Thus, according to the data in 7], two
coefficients are available, We will write them down for T = T,

The mean angular coefficient for the end surfaces of a circular cylinder of diameter D and height H

is
9, = (VR 1 —hP[l — e (V H2+ D¥4)].

Here h = H/D. The formula yields satisfactory results when h = 3, When h < 3, the values of the coef-
ficient are too high.

The local angular coefficient for a point on the lateral surface and the end surface of a cylinder at
distance H is

1

Q5 = ( Vm~h—m)[l —c(VEFD2)].

The result is almost identical to that obtained by the exact formula, if h = 3. For h < 3 the values here
are too low.

For parallel sides of a parallelepiped the approximate formula (10) was proposed in [6], with legs
=HQ@ + ¢%. When a,H=01, o, ,A <1, and L/A < 10, the error is less than 3%, Unlike the coefficients
¢4 and @5, formula (10) is used here when the distance between the surfaces is very small. As ¢, ,H — 0,
this formula is preferable to the exact one on account of the singularity in the latter. Aithough loff does
not depend on the wave number, the range of validity of the formula depends on it. For this reason, some
further study is needed before the range of validity can be established for real-medium systéms.

The representation of angular coefficients for real-medium systems in the form (10) has been ac-
cepted as universal in [11]. It is possible to apply here the concept of an angular coefficient also in the
case of multiple reflections, without resorting to highly complex expressions.

In conclusion, we will consider two other independent methods of calculating the emissivity of three-
dimensional bodies, of which one is well known whilst the other has been proposed earlier.

Mean Emissivity of a Convex Body. It is well known that the emissivities of various convex bodies
do not differ much, if the dimension{, = 4V/Fistaken as the argument. Apparently, the maximum de-
viation is found in the case of a sphere and of an infinite plane strip. This deviation is 9% when a1y = 0.7.
For o, [, > 4.6 the deviation changes sign. In the case of a real body, there takes place an averaging of
deviations over the spectrum. Therefore, overall emissivity deviates probably by less than 9%, the emis-
sivity of a spherical shell being higher at almost any thickness encountered in practice (not for thicknesses
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TABLE 1. Local Emissivity at the Center of the Plane
Base of an Infinitely Long Gray Semicylinder (g, is the
local emissivity according to the exact formula (12); 52"
the emissivity according to the approximate formula (11);
a R is the dimensionless optical radius)

aR ] ‘ ‘ g oo I s; l g
0,05 0,0613 0,0633 1 0,697 0,699
0.1 0,118 0,121

0,5 0,457 0,461 2 0,902 0,901

TABLE 2, Emissivity of an Infinitely Long Cylinder Con-
taining Gaseous Carbon Dioxide at t = 1000°C (g5 is the
emissivity according to Eq. (9) and the nomograms in [8];
g4 the emissivity according to Eq. (11) with the Nevskii
{9] values for the emissivity of a strip and a sphere; D is
the diameter of the cylinder)

pD,im-atm 8; I 8§ pD, m-atm g [ 3
0,02 0,0556 l 0,0575 0,3 ! 0,138 [ 0,143
0,1 0,1007 | 0,1021 0,5 0,163 0,165

TABLE 3. Local Emissivity at the Center of the Plane
Base of an Infinitely Long Semicylinder Containing Gas-
eous Carbon Dioxide at t = 600°C (g, is the local emis-
sivity according to Eq. (8) and the nomograms in [8]; &,
the emissivity according to Eq. (11) with €; taken from
[9]; € is the emissivity calculated from the nomograms
in [8]; R is the radius of the cylinder)

pR.m.atm| & & pR, m.atm ’ & e
0,02 0,0722 0,0738 0,3 0,154 ' 0,156
0.1 0117 0:118 0.7 07187 07189

that are too large). A comparison with available data (Nevskii [9]) confirms this. There is a situation
where the calculating procedure adopted for gray bodies is more accurate for real-medium bodies. The
opposite is true in the following example.

Local Emissivity of a Symmetrical Convex Body. In Fig. 2 sections of two~dimensional bodies are
shown. The sections perpendicular to them represent strips. Both parts of such a body are symmetrical
with respect to the 00' axis, the line normal at point 0 of the hemisphere at which the local emissivity is
to be determined. For the body generated by rotating the transverse cross section about the 00' axis we
denote the emissivity at point 0 (of the sphere or hemisphere) by £; the emissivity of a zone generated by
rotation of the second section will be denoted by &;. For gray or monochromatic radiation we have

2 1 1
2. (11
e £ g :
For the case in Fig. 2a, € = ¢, is the emissivity of a cylinder. The maximum error is 1.44% when a,D
=0.45. For the case in Fig. 2b, € =&, and &) = 1 — exp (~ayR). According to the exact formula,

g, =1—M (a,R). (12)
The values of g, obtained by the exact and by the approximate formula are given in Table 1. The

deviation is somewhat greater than in Fig. 2a. For Fig. 2¢, according to Eq. (11), we must write more

generally
2¢0 _ € + 1 ) (13)
£ £y £

Here e, = sin g is the emissivity for an infinitely continuous medium. Analogously, €g,0 = sin? 8. The
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values of £ and €9, are equal to the space angles subtending the bodies from the point 0. Since €)= £q,c

-[1 — exp (~a,R)], = £o &, from Eq. (13) we find Eq. (11) for 2 semicylinder with the deviations as
listed in Table 1. When extending (13) and (11) to other configurations, one must remember that these
are empirical formulas and have all the inherent shortcomings of such.

The use of Eqs. (11) and (13) for a real three-dimensional body arouses certain doubts, especially in
the case of small thicknesses. Their error should be increasing in any case, Nevertheless, the values of
g4 and €, according to (11) for gaseous carbon dioxide have been compared with the respective values ac-
cording to the formulas in Examples 3 and 2 (Tables 2 and 3). The deviations are almost entirely due to

Eqg. (11).
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NOTATION

are coefficients independent of the wave number;
is the thermal absorptivity of 2 medium;

are the absorptivity of a strip, a semicylinder, and a cylinder, respectively;
are the diameter and radius of a cylinder; v

is the height of a cylinder or the distance between planes;

are distances in Fig. 1;

is the thickness of a plane-parallel strip, the path length of a ray;

is the effective path length of a ray;

is an arbitrary function;

is a Planck function, em-W/m?- sr;

are the temperature of the medium and of the radiating surface, respectively,
OK; . :

are intermediate Mikk functions;

are special functions [4, 5];

is the partial pressure of a component, atm;

is the volume;

is the surface enveloping the volume,

are exponents;

is the spectral absorptivity, m~! (or m.atm)=};

is an angle (Fig. 1);

are the emissivity of a strip, a semicylinder at the center of its plane base, a
cylinder, and a solid of revolution, respectively;

are angular coefficients in a real-medium system considered in Examples 1, 2,
and 7;

is the angular coefficient for a diathermal medium;

is the local angular coefficient;

is the wave number, em-!;

is the thermal radiation density, W/ m?.
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